ARTIGO DE REVISÃO / REVIEW ARTICLE

Fatores de virulência e mecanismos de adaptação de Candida não albicans à célula hospedeira

Non albicans Candida virulence factors and adaptation mechanisms to the host cell

/ F. Vieira¹ / T. Nascimento ^{1,2}

- ¹ Instituto Superior de Ciências da Saúde Egas Moniz (ISCSEM);
- ² Centro de investigação interdisciplinar Egas Moniz (CiiEM)

Campus Universitário - Quinta da Granja -Monte de Caparica

2829-511 Caparica, Portugal

Correspondência:

Francisca Mello Vieira

Endereço: Campus Universitário - Quinta da Granja - Monte de Caparica 2829-511 Caparica, Portugal Telefone: 917926936

E-mail: franciscademellovieira@gmail.com

Patrocínios:

O presente estudo não foi patrocinado por qualquer entidade

Artigo recebido em 14/06/2017

Artigo aceite para publicação em 20/12/2017

/ Resumo

As espécies do género *Candida*, comensais no Homem, têm um caráter oportunista, podendo tornar-se patogénicas quando existe um desequilíbrio na resposta do sistema imunitário, desencadeando infeções superficiais ou sistémicas. Embora *Candida albicans* (*C. albicans*) seja considerada a espécie com maior patogenicidade, dados epidemiológicos apontam para a emergência das espécies de *Candida* não-albicans (CNA), nomeadamente em ambiente hospitalar. As infeções por CNA estão associadas a elevadas taxas de morbilidade e mortalidade, sendo o seu incremento multifatorial. Merecem destaque a frágil imunidade do hospedeiro, nomeadamente os contextos clínicos atuais como o doente com infeção por VIH e o oncológico, bem como a evolução dos procedimentos médicos e a utilização de técnicas cirúrgicas invasivas. Os fatores de virulência apresentados por estas espécies são decisivos para expressão da sua patogenicidade, contribuindo igualmente para o estabelecimento da infeção os mecanismos de adaptação à célula hospedeira.

Palavras-chave: fatores de virulência, mecanismos de adaptação, Candida não-albicans

/ Abstract

The species from genus Candida, commensals in Humans, may become pathogenic when there is an imbalance in the immune system response, triggering superficial and/or systemic infections. Although Candida albicans (C. albicans) is identified as one of the most pathogenic species, epidemiological data points to the emergence of non-albicans Candida (NAC) species, especially in the hospital setting.

NAC infections are associated with high morbidity and mortality rates, with a multifactorial increase. Host immune suppression associated with HIV and cancer patients deserves special attention, as well as the development of medical procedures and use of invasive surgical techniques. The virulence factors presented by these species also play an important role in their pathogenicity expression, as also their adaptation mechanisms to the host cell contribute to the establishment of infection.

Keywords: virulence factors, adaptation mechanisms, non albicans Candida species

/ Introdução

Segundo a World Health Organization, uma infeção emergente é definida como uma infeção que surge pela primeira vez em determinada população ou que poderá ter existido e cuja incidência tem vindo a aumentar rapidamente ¹. As infeções fúngicas são muitas vezes desvalorizadas, apesar de algumas apresentarem taxas de mortalidade semelhantes às da tuberculose ou malária ².

As espécies de *Candida* são ubiquitárias, crescendo tanto em aerobiose como em anaerobiose ³, e dado o seu carácter oportunista, podem tornar-se patogénicas aquando de desequilíbrios na imunidade do hospedeiro, desencadeando desta forma diversas infeções ⁴. Morfologicamente, consoante a espécie em causa, poderão apresentar três formas distintas: leveduriforme (blastoconídio), hifa e/ou pseudo-hifa ⁵. Algumas das espécies mais patogénicas têm a capacidade de crescer nas diferentes formas, sendo *C. glabrata* a única que apenas se apresenta na forma de blastoconídios ⁶.

Pretende-se com o presente artigo elucidar tanto os fatores de risco do hospedeiro que predispõem o desenvolvimento de candidose, como os fatores de virulência responsáveis pela expressão da patogenicidade de *Candida*, nomeadamente das espécies de CNA, e os mecanismos que lhes permitem sobreviver no hospedeiro.

/ Epidemiologia

Apesar de *C. albicans* ser ainda a espécie mais prevalente, desde a década de 80 que se assiste a uma mudança na epidemiologia destas infeções, verificando-se uma emergência nas infeções por

CNA, nomeadamente por *C. tropicalis*, *C. krusei*, *C. glabrata* e *C. parapsilosis* ⁷⁻¹¹.

As candidoses mucocutâneas são as que ocorrem com maior regularidade ¹². No caso de indivíduos com o sistema imunitário muito debilitado, poderão desenvolver-se infeções sistémicas, as quais se revestem de grande importância clínica dado as elevadas taxas de mortalidade associadas – 71-79% ¹³.

A doença oncológica é apontada como a principal comorbilidade nos doentes com candidemia, estando a epidemiologia destas infeções iqualmente relacionada com a região geográfica.¹⁴

Candida é apontada como responsável pela crescente incidência de casos de septicemia nos hospitais ^{3,15}, estando classificada nos Estados Unidos como a terceira ou quarta causa de infeções nosocomiais ¹⁶.

/ Fatores de risco

São diversos os fatores de risco que contribuem para o desenvolvimento de candidose por espécies de CNA, nomeadamente contextos clínicos, como a infeção por VIH ou doenças oncológicas, assim como outros fatores epidemiológicos ou iatrogénicos, variáveis entre as diferentes espécies e referenciados no Quadro 1 ^{17, 18}.

/ Fatores de virulência

Os fatores de virulência podem apresentar variações na sua expressão, dependendo da espécie em causa e da sua origem geográfica, do hospedeiro e do tipo, local e estadio da infeção ²². Estes fatores podem atuar em sinergia no estabelecimento do processo infecioso ³.

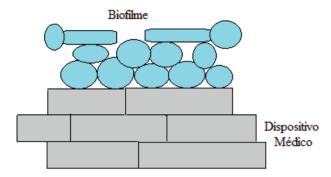
QUADRO I*							
ESPÉCIE	FATORES DE RISCO/ PREDISPONENTES						
	EPIDEMIOLÓGICOS	IATROGÉNICOS	DOENÇA SUBJACENTE				
C. glabrata	ldade avançada	Profilaxia com FCZ ¹ , exposição prévia a equinocandinas, recetores de transplante de medula óssea, transplante de órgãos sólidos, cirurgia abdominal, terapêutica antibiótica, utilização de corticoides, NPT ² e CVC ³	Tumores sólidos, patologias hemato-oncológicas, disfunção renal, Diabetes <i>mellitus</i> , VIH/ SIDA				
C. parapsilosis	Prematuridade, crianças e jovens (1-19 anos)	Presença de dispositivo intravascular, NPT ² , recetores de transplante de medula óssea, infeções nosocomiais, formação de biofilmes em CVC ³ , antibioterapia prévia, terapêuticas imunossupressoras	Neutropenia, queimaduras				
C. tropicalis	ldade avançada	Internamento em UCI⁴, cateterização prolongada, NPT², quimioterapia, terapêutica com antibióticos de largo espectro	Neutropenia, doença maligna (leucemia), VIH/SIDA				
C. krusei	Faixa etária neonatal	Profilaxia com FCZ¹, recetores de transplante de medula óssea, internamento em UCl⁴, cirurgia gastrointestinal recente	Leucemia, neutropenia, VIH/ SIDA				
C. guilliermondii	ND⁵	Recetores de transplante de medula óssea, cateteres intravasculares	Doença maligna				
C. Iusitaniae	ND⁵	Terapêutica com antibióticos de largo espectro, recetores de transplante de medula óssea	ND⁵				
C. dubliniensis	ND⁵	ND⁵	VIH/SIDA, neutropenia				

^{*} Características e fatores de risco/predisponentes responsáveis pela emergência das espécies de CNA. Retirado e adaptado de 7,19-21

- 2 Nutrição parentérica total
- 3 Cateter venoso central
- 4 Unidade de cuidados intensivos
- 5 Não descrito

Adesão

Os mecanismos de reconhecimento da célula hospedeira permitem a adesão de *Candida*, iniciando-se deste modo o processo infecioso ^{23, 24}. A adesão é mediada por proteínas específicas – adesinas – localizadas na parede celular fúngica, bem como por fatores inespecíficos, onde se incluem propriedades físico-químicas como a hidrofobicidade, forças eletrostáticas e de Van der Walls e pontes de hidrogénio ^{3, 6}.


As adesinas mais relevantes, codificadas por duas famílias de genes – ALS (agglutinine-like sequence) e EPA (epithelial adhesin) – conferem a capacidade de aderir a superfícies bióticas (aminoácidos e açúcares presentes na superfície celular do hospedeiro) e materiais abióticos (dispositivos médicos) ^{9, 23, 24}. Estas proteínas desempenham ainda um papel fundamental na formação dos biofilmes ²³.

Em *C. albicans* e *C. glabrata*, a adesão é mediada pelas proteínas Als e Epa, respetivamente ^{23, 25}. Já em *C. tropicalis*, foram identificadas três proteínas Als, em *C. parapsilosis* cinco proteínas Als e seis *Pga* (outras proteínas de membrana) e em *C. dubliniensis* as adesinas são codificadas por um gene semelhante ao de *C. albicans*, podendo apresentar diferenças na sua regulação ^{6, 26}.

¹ Fluconazol

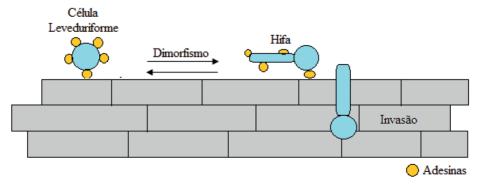
Biofilme

Um biofilme é uma associação organizada de comunidades de células, geralmente incorporadas numa matriz extracelular ⁹. A sua formação pode ser sintetizada em quatro passos: adesão, iniciação, maturação e dispersão das células não aderentes, que poderão colonizar outros locais ²⁷. Das espécies de CNA, *C. tropicalis*, *C. glabrata*, *C. parapsilosis* e *C. dubliniensis* apresentam a capacidade de formar biofilmes, cujas características variam consoante a espécie (Fig. 1) ⁷.

Figura 1 – Ilustração de um biofilme de *C. albicans*. Numa fase inicial, as células leveduriformes aderem ao substrato e, ao proliferarem, originam estruturas filamentosas que ocupam a parte superior do biofilme.

A resistência intrínseca associada aos biofilmes de *Candida* é atribuída a um conjunto de fatores, tais como a elevada densidade das células no seu interior, efeitos da matriz extracelular na penetração dos fármacos, expressão de genes resistentes, nomeadamente aqueles que codificam bombas de efluxo e presença de células "persistentes" ²⁸.

Morfogénese


Algumas espécies de *Candida* apresentam a capacidade de alternância reversível entre a forma leveduriforme e a filamentosa, consoante as condições de temperatura e pH do meio ambiente – capacidade de dimorfismo (Fig.2) ^{3, 9}. *C. albicans, C. tropicalis* e *C. dubliniensis* possuem a capacidade de formação de hifas, estando estas espécies associadas a uma maior resistência à fagocitose, assim como a uma maior capacidade de adesão e invasão subsequente ^{6, 9}. Pelo contrário, a virulência de *C. glabrata* não depende da sua morfologia ²³.

Enzimas

As enzimas hidrolíticas extracelulares representam o fator de virulência com maior relevância na infeção por *Candida*, já que estas degradam a célula hospedeira, facilitando a sua colonização e consequente estabelecimento da infeção ²⁹. Neste grupo incluem-se as aspartil proteinases, fosfolipases, lipases, e hemolisinas, sendo as proteinases e fosfolipases as de maior relevância ^{6,9,22}.

Potencial oxidativo

Perante uma infeção por *Candida*, as células fagocíticas vão atuar em defesa do hospedeiro, produzindo espécies reativas ao oxigénio responsáveis pela degradação do microrganismo patogénico fagocitado ³⁰. Porém, alguns fungos patogénicos, nomeadamente *C. glabrata*, são tolerantes aos radicais livres e peróxidos, uma vez que possuem mecanismos enzimáticos e não-enzimáticos antioxidantes, resistindo deste modo ao *stress* oxidativo ³⁰.

Figura 2 – Capacidade de dimorfismo, em que a forma de hifa apresenta uma maior capacidade de adesão ao substrato e consequente invasão da célula hospedeira.

Switch fenotipico

Conforme o ambiente que colonizam, algumas espécies de Candida têm a capacidade de alternância entre diferentes fenótipos, cujas colónias são caracterizadas por diferentes colorações que apresentam em meio de cultura com Sulfato de Cobre $(CuSO_4)^{31-33}$.

C. albicans apresenta como fator de virulência a capacidade de switch fenotípico entre colónias geneticamente semelhantes – brancas e lisas ou opacas e de textura rugosa. As colónias diferem na sua patogenicidade e expressão genética, estando as opacas associadas à colonização cutânea e a uma maior suscetibilidade à fagocitose, enquanto as brancas são menos propensas a serem fagocitadas e associam-se normalmente a casos de candidemia ³⁴. No que respeita às CNA, este mecanismo está descrito para C. lusitaniae, C. guilliermondii, C. dubliniensis, C. tropicalis e C. glabrata, no entanto não se encontra totalmente elucidado ³¹⁻³³.

/ Patogénese da infeção

Nas infeções por *Candida*, existem dois mecanismos possíveis de patogénese: endógeno ou exógeno. Nas infeções por via endógena, a transmissão deve-se ao carácter patogénico oportunista de *Candida* em causar infeção em indivíduos imunocomprometidos. Por outro lado, *Candida* poderá desencadear infeções por via exógena, como a disseminação através das mãos dos profissionais de saúde ou através de dispositivos médicos hospitalares ^{3, 9, 19}.

Para além das candidoses superficiais (cutâneas e mucocutâneas), *Candida* poderá alcançar a corrente sanguínea (candidemia) e/ou atingir tecidos profundos (candidose invasiva).

Num estudo em que se utilizou *C. albicans* como modelo concluiuse que o processo de adesão, invasão e destruição é influenciado por alguns fatores, como o tipo de tecido ao qual vão aderir, o estado de diferenciação das células epiteliais, bem como a espécie de *Candida* em causa e a sua morfologia ³⁷.

/ Mecanismos de adaptação à célula hospedeira

Perante uma infeção por *Candida*, reveste-se de elevada importância o papel das células fagocíticas – neutrófilos, monócitos, macrófagos e células dendríticas – na defesa do hospedeiro ^{28, 38}. O tipo de candidose e respetiva dimensão são influenciados pela resposta do hospedeiro, pelo que os doentes com neutropenia são considerados de risco de candidose mucocutânea e invasiva, dado o reduzido número de neutrófilos circulantes ³⁹.

O reconhecimento de características celulares fúngicas pelo sistema imunitário do Homem parece ser um componente chave. As defesas do hospedeiro expressas aquando da colonização por *Candida* das mucosas, invasão de tecidos e/ou disseminação através da corrente sanguínea dependem de mecanismos imunológicos distintos.

A resposta imunitária, inata e adaptativa (adquirida), protege o hospedeiro perante uma infeção por *Candida*. No entanto, se por um lado a imunidade inata, por meio de macrófagos e neutrófilos, é responsável pela proteção contra candidemia, por outro lado a imunidade celular ativada, nomeadamente, por citocinas dos linfócitos TCD4+ (Th17 e Treg), protege o hospedeiro de episódios de candidose mucocutânea ^{36, 39}.

O reconhecimento de características celulares fúngicas, em particular, componentes da parede celular de fungos, pelo sistema imunitário do hospedeiro é um elemento importante para constituir uma resposta de defesa antifúngica ⁴⁰. O sistema imune distingue o próprio do não próprio do organismo através de recetores celulares encontrados nas células imunes designadas de recetores de reconhecimento padrão (PRRs) que interagem com padrões moleculares presentes em microrganismos patogénicos (PAMPS) ⁴⁰.

A emergência das infeções fúngicas assenta no facto dos agentes patogénicos adquirirem mecanismos de sobrevivência no interior da célula hospedeira. Assim, existem estratégias desenvolvidas por *Candida* que impedem o seu reconhecimento: mecanismos para

QUADRO II*							
	C. albicans	C. dubliniensis	C. glabrata	C. parapsilosis	C. tropicalis		
Adesão	+	+	+	+	+		
Biofilme	+	+	+	+	+		
Morfogénese	+	+	-	-	+		
Enzimas	+	+	+	+	+		
Switch fenotípico	+	+	+	+	+		

^{*} Fatores de virulência das espécies de CNA. +, apresenta o fator de virulência; -, não apresenta o fator de virulência. Adaptado de 6,7,25,32,35,36

"mascarar" os PAMPs e modulação da ativação do sistema do complemento, prevenindo a opsonização ³⁸. A capacidade de dimorfismo de algumas das espécies poderá conduzir a modificações na parede celular fúngica, alterando-se os PAMPS, dificultando deste modo o reconhecimento do agente patogénico pelas células do sistema imunitário do hospedeiro ⁴.

Além das estratégias supramencionadas, *C. glabrata* possui a capacidade de interferir com a maturação do fagossoma e evitar a sua acidificação, possuindo igualmente a capacidade de armazenamento de ferro, resistência ao *stress* oxidativo, adaptação nutricional e evasão desta mesma estrutura, conseguindo também, por outro lado, resistir ao ambiente pobre em nutrientes do fagolisossoma ^{38, 40}. *C. glabrata* consegue replicar-se e sobreviver entre 2–3 dias no interior dos macrófagos, sendo esta uma estratégia para a sua disseminação hematogénica ⁴⁰.

/ Conclusão

Com a realização do presente artigo, que reúne informação atualizada, foi possível concluir que a prevalência de infeções fúngicas por *Candida*, nomeadamente por espécies não-*albicans*,

tem vindo a aumentar nos últimos anos, constituindo um problema emergente de saúde pública, nomeadamente em indivíduos com comorbilidades críticas, como os doentes oncológicos. Desta forma, torna-se imperativa a realização de estudos que possam inferir acerca da epidemiologia destas espécies, assim como do seu padrão de resistência aos antifúngicos empiricamente utilizados.

Relativamente às propriedades relacionadas com as espécies de CNA, estas detêm importantes fatores de virulência que aliados à fraca imunidade do hospedeiro contribuem para a sua patogenicidade. A prevalência de infeções por espécies não-albicans passa também pela sua capacidade de desenvolver mecanismos que permitem a sua sobrevivência no interior da célula hospedeira.

Em suma, importa salientar que os fatores de virulência e mecanismos de adaptação ao hospedeiro são variáveis entre as espécies de CNA, contribuindo para a sua elevada patogenicidade.

/ Bibliografia

- 1 World Health Organization (2017). Emerging diseases. Available from: http://www.searo.who.int/topics/emerging_diseases/en/
- 2 Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. *Science*. 2012;336(6082):647.
- 3 Giolo MP, Svidzinski TIE. Fisiopatogenia, epidemiologia e diagnóstico laboratorial da candidemia. *J Bras Patol e Med Lab*. 2010;46(3):225–234.
- 4 Lewis RE, Viale P, Kontoyiannis DP. The potential impact of antifungal drug resistance mechanisms on the host immune response to *Candida*. *Virulence*. 2012;3(4):368–376.
- 5 Thompson DS, Carlisle PL, Kadosh D. Coevolution of morphology and virulence in *Candida* species. *Eukaryot Cell*. 2011;10(9):1173-1182.
- 6 Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. *Candida glabrata*, *Candida parapsilosis* and *Candida tropicalis*: biology, epidemiology, pathogenicity and antifungal resistance. *FEMS Microbiol Rev.* 2012;36(2):288-305.
- 7 Deorukhkar SC, Saini S. Non *albicans Candida* species: A review of epidemiology, pathogenicity and antifungal resistance. *Pravara Med Rev.* 2015;7(3):7-15.

- 8 Deorukhkar SC, Saini S, Mathew S. Non-albicans Candida Infection: An Emerging Threat. *Interdiscip Perspect Infect Dis.* 2014;2014:1-7.
- 9 Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. *Candida* species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. *J Med Microbiol*. 2013;62(1):10-24.
- 10 Yapar N. Epidemiology and risk factors for invasive candidiasis. *Ther Clin Risk Manag.* 2014:10:95.
- 11 Sharma P, Kaur J, Sharma S.Prevalence of non-albicans Candida species versus Candida albicans in critical care patients of a tertiary care hospital. Trop J Path Micro 2016;2(3):89–93
- 12 Williams D, Lewis M. Pathogenesis and treatment of oral candidosis. *J Oral Microbiol.* 2011;3:5771.
- 13 Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral *Candida* infection and therapeutic strategies. *Front Microbiol*. 2015;6(1391):1–10.
- 14 Wu PF, Liu WL, Hsieh MH, Hii IM, Lee YL, Lin YT, et al. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;6(10):e87.

- 15 Oren I, Paul M. Up to date epidemiology, diagnosis and management of invasive fungal infections. *Clin Microbiol Infect*. 2014;20(Supplement 6):1–4.
- 16 Deorukhkar SC, Saini S. Why *Candida* species have emerged as important nosocomial pathogens? *Int J Curr Microbiol Appl Sci.* 2016;5(1):533–545.
- 17 Deorukhkar SC, Saini S. Virulence factors attributed to pathogenicity of *non albicans Candida* species isolated from Human Immunodeficiency virus infected patients with oropharyngeal candidiasis. *Ann Pathol Lab Med.* 2015;2(2):A62-A66.
- 18 Farmakiotis D, Kyvernitakis A, Tarrand JJ, Kontoyiannis DP. Early initiation of appropriate treatment is associated with increased survival in cancer patients with *Candida glabrata* fungaemia: a potential benefit from infectious disease consultation. *Clin Microbiol Infect*. 2015;21(1):79–86
- 19 Paramythiotou E, Frantzeskaki F, Flevari A, Armaganidis A, Dimopoulos G. Invasive fungal infections in the ICU: how to approach, how to treat. *Molecules*. 2014;19(1):1085–1119.
- 20 Kaur R, Dhakad MS, Goyal R, Bhalla P, Dewan R. Spectrum of Opportunistic Fungal Infections in HIV/AIDS Patients in Tertiary Care Hospital in

- India. *Can J Infect Dis Med Microbiol*. 2016:2016:1–7.
- 21 Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. *J Antimicrob Chemother*. 2016;71(6):1–13.
- 22 Deorukhkar SC, Saini S, Mathew S. Virulence Factors Contributing to Pathogenicity of *Candida tropicalis* and Its Antifungal Susceptibility Profile. *Int J Microbiol.* 2014;2014:1–6.
- 23 Brunke S, Hube B. Two unlike cousins: *Candida albicans* and *C. glabrata* infection strategies. *Cell Microbiol.* 2013;15(5):701–708.
- 24 De Rossi T, Lozovoy MAB, da Silva V, et al. Interações entre *Candida albicans* e hospedeiro. *Semin Ciências Biológicas e da Saúde*. 2011;32(1):15–28.
- 25 Modrzewska B, Kurnatowski P. Adherence of *Candida* sp. to host tissues and cells as one of its pathogenicity features. *Ann Parasitol.* 2015;61(1):3–9.
- 26 Sullivan D, Moran G, Pinjon E, et al. Comparison of the epidemiology, drug resistance mechanisms, and virulence of *Candida dubliniensis* and *Candida albicans. FEMS Yeast Res.* 2004;4(4–5):369–376.
- 27 Finkel JS, Mitchell AP. Genetic control of *Candida albicans* biofilm development. *Nat Rev Microbiol.* 2011;9(2):109-118.

- 28 Rodrigues CF, Silva S, Henriques M. *Candida glabrata*: a review of its features and resistance. *Eur J Clin Microbiol Infect Dis.* 2014;33(5):673-688
- 29 Deorukhkar S, Saini S. Non *albicans Candida* species: its isolation pattern, species distribution, virulence factors and antifungal susceptibility profile. *Int J Med Sci Public Heal*. 2013;2(3):533–538
- 30 Miraloglu M. Oxidative stress and fungal diseases. *Adv Lab Med Int*. 2016;6(1):7-16.
- 31 del Valle GMM. *Candida glabrata*: an emerging pathogen. *Biociencias*. 2015;10(1):89–102.
- 32 Lastauskien E, eputyt J, Girkontait I, Zinkevi ien A. Phenotypic switching of *Candida guilliermondii* is associated with pseudohyphae formation and antifungal resistance. *Mycopathologia*. 2015;179(3-4):205-211.
- 33 Tscherner M, Schwarzmüller T, Kuchler K. Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen *Candida glabrata*. *Pharmaceuticals*. 2011;4(12):169–186.
- 34 Schell WA. Biology of *Candida* infections. *UpToDate* [serial online] 2017 Oct 30 [cited 18 Dec 2017]. Available from: URL: https://www.uptodate.com/contents/biology-of-candida-infections?source=search_resultEtsearch=biology%20 candidaEtselectedTitle=1~150#H6

- 35 Laffey SF. Phenotype switching affects biofilm formation by Candida parapsilosis. *Microbiology*. 2005;151(4):1073–1081.
- 36 Whibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine. 2015;76(1):42–52.
- 37 Dalle F, Wächtler B, L'Ollivier C, et al. Cellular interactions of *Candida albicans* with human oral epithelial cells and enterocytes. *Cell Microbiol*. 2010;12(2):248–271.
- 38 Brown GD. Innate antifungal immunity: the key role of phagocytes. *Annu Rev Immunol*. 2011;29:1–21.
- 39 Lionakis MS, Netea MG. *Candida* and host determinants of susceptibility to invasive candidiasis. *PLoS Pathog*. 2013;9(1):e1003079.
- 40 Kasper L, Seider K, Hube B. Intracellular survival of *Candida glabrata* in macrophages: Immune evasion and persistence. *FEMS Yeast Res.* 2015;15(5):1–12.